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The inverse problem of finding the form of the attachment of one of the ends of a rod, which is inaccessible to direct observation, 
from the natural frequencies of its flexural oscillations is considered. A theorem on the uniqueness of the solution of this inverse 
problem is proved and a method for establishing the unknown boundary conditions is indicated. An approximate formula for 
determining the boundary conditions is obtained using a finite set of natural frequencies (it is assumed that these natural frequencies 
can also be specified approximately with a certain degree of accuracy). The use of just the first non-zero natural frequencies is 
f~un6 ~o~De e~sen'fiaS'ne~e. ~ l b 5  ~Sse~'~er ~ e n e e  5~6. A55 i~g'n'~s reserveb. 

The problem in question belongs to the class of inverse problems and is a completely natural problem of acoustic 
diagnosis. However, it has not been formulated in this way (see [1-3]). A closely related formulation of the problem 
was proposed in [4]; namely, is it possible, knowing all the eigenvalues ~., of the problem 

AU+XnU=0,  x e ~ ;  Ul~t~=0 

to  t~elen~ine ~ e  SDrm D~ l~e 6Dmain ~3 k3nSi~e I~is, in a~is paper h is nDl l~e ~orm o$ l~e Domain w~'~cb "~s song~1 
but the nature of  the attachment. 

Similarly formulated problems also arise in the spectral theory of differential operators, where it is required to 
establish the coefficients of a differential equation and the boundary conditions using a set of eigenvalues (for 
more details, see [5-8]). However, as data for finding the boundary conditions, it was not one spectrum (as in this 
paper) but several spectra or also at/ter add~t~ortal spectral data (for example, t/te spectral function, t/te We~l fuac~ 
cr so-ca/led we~/tc~ttg numbers) t/tat were used ~tt t/tose papers. Moreover, t/te ma(a a~m C/tere was 03 d e t e r m ~  
the coefficients in the equation and not in the boundary conditions. The aim of this paper is, in the case of a known 
differential equation, to establish some of the boundary conditions of the eigenvalue problem from its spectrum. 

The problem of determining a boundary condition using a finite set of eigenvalues has been considered previously 
[9]. Unlike that problem, in this paper it is necessary to determine not one but two boundary conditions, which 
requires other methods of solution. 

1. F O R M U L A T I O N  O F  T H E  I N V E R S E  P R O B L E M  

T h e  p r o b l e m  of  the flexural oscillations of  a rod with a rigidly c l amped  r ight-hand end  reduces,  af ter  
making  the subst i tut ion u(x, t) = y(x) cos (cot) (see, for  example,  [10] or  [11]) to the following eigenvalue 
Frob /em 

(o~y")"=pFto2y, Ul(y, t o ) = 0 ,  U2(Y, t o ) = 0 ,  y ( I ) = 0 ,  y ' ( i ) = 0  (1.1) 

4 
Here ,  Ui(y, co) = ~ 1  aiJy(j-1)(O) (i = 1, 2) are  l inear  f o rms  which  cha rac t e r i ze  the  fixing at  the  po in t  

x = 0 (at the lef t-hand end) and the coefficients aij = aij(to) are polynomials  of  to, c~ is the flexural rigidity, 
13 is the density and F is the cross-sect ion area  of  the rod. 

We will now formula te  the inverse of  this e igenvalue problem:  it is requi red  to find the unknown 
l inear  ~orms U~(y, to), U~(y, o~) ~rom the na tura l  f requenc ies  of  the  oscillations of  fl3e rod.  
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We will now formulate the inverse of this eigenvalue problem: it is required to find the unknown 
linear forms UI(y, co), U2(y, tg) from the natural frequencies of the oscillations of  the rod. 

We will now reformulate the inverse problem in another, more precise, form, taking account of the 
fact that ix, p and F are constant and denoting pFto2/tx by ~4. In the new notation, problem (1.1) can 
be written as follows: 

y(4) = ~4y, U j (y, ~.) = 0, U2(y, ~.) = 0, y(1) = 0, y'(1) = 0 (1.2) 

4 
where Ui(y, ~.) =jE__ 1 aiyy(J-O(O) (i = 1, 2) and the coefficients aij = aij(~.) are polynomials in ~.. 

We shall denote the matrix, consisting of the coefficients aij of the forms UI(y, ~.) and U2(y, ~.), byA 
and its minors by Mq: 

A= all a12 a13 at4l[, Miy= ali aljl 
a21 a22 a23 a24 H a2i a2j I 

The search for the forms UI(y, Z), U2(y, ~ is equivalent to finding the linear envelope (al, a2), 
constructed in the vectors a i = (ail, ai2 ' ai3, ai4 ) (i = 1, 2). 

The different cases for the clamping of one end of a rod [3, 10] are presented below: 
rigid clamping 

free support 

free end 

II; ° ° °  A= I 0 0 

if,o 0o Oll A= 0 I 0 

floating fixing 

II ° ° l  :l A= 0 0 0 

U: 'o  :11 A= 0 0 

five other types of elastic fixing 

o , o  ~1 fl'o o 
A 0 0 ' - c  2 

iio o O,ol U~ o 
0 - c  2 1 ' -¢2 

0 ~11 II ° ° '  0jp 1 ' c I 0 0 1 ' 

0 

and a concentrated inertial element at the end 

a ~l m~4 0 0,011 0 -cL  4 1 

Note that, in all ten cases 

MI4 = 0, M23 -- 0 (1.3) 

Hence, in terms of eigenvalue problem (1.2), the inverse problem which has been constructed above 
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can be formulated as follows: the coefficients a 0 of the forms UI(y, ~.) and U2(y, ~.) of problem (1.2) 
are unknown, the rank of the matrixA, which is made up of these coefficients, is equal to two and the 
minors M14 and M23 of this matrix are identically equal to zero, the non-zero eigenvalues ~.k of problem 
(1.27) are known and it is required to find the linear envelope (al, a2) of the vectors a i = (ail , ai2 ' ai3 , 
ai4 ) (i = 1, 2). 

Conditions (1.3) do not constrain the physical formulation of the problem but they are necessary 
since, without them, the uniqueness of the solution of the inverse problem is destroyed (in this case, 
different linear envelopes may correspond to one and the same set of eigenvalues). 

2. T H E  U N I Q U E N E S S  OF T H E  S O L U T I O N  
OF THE I N V E R S E  P R O B L E M  

Together with problem (1.2), we consider the following eigenvalue problem 

y(4)=k4y, Ol(y,k)=O, 02(y,~.)=0 ' y ( l )=0 ,  y ' ( l ) = 0  (2.1) 

4 
where ~li(y, ~.) =j~l  biyU-1)(O) (i = 1, 2) and bi/= bij(~.) are polynomials in ~. 

We denote the matrix composed of the coefficients biy of the forms UI(y, ~.) and UE(y, k) by B and 
its minors by/~t~ : 

b21 b22 b23 b24 ' I b2i b2J 

The linear envelope of the vectors b i = (bil , bi2 , bi3 , bi4) r (i = 1, 2) is denoted by (bl, b2). 

A theorem on the uniqueness of  the solution of  the inverseproblem. Suppose the following conditions 
are satisfied 

rank A = rank B = 2 (2.2) 

MI4 -- M23 --/~14 --/~23 -- 0 (2.3) 

If the non-zero eigenvalues {~.k} of problem (1.2) and the non-zero eigenvalues {~.k} of problem (2.1) 
are identical, when account is taken of their multiplicities, then the linear envelopes (al, a2) and 
(bl, b2) are also identical. 

Proof. We note that the functions 

Yl (x, ~) = (cos kx + ch Lx) / 2 

Y2 (x, ~.) = (sin kx + sh kx)/(2~) 

Y3 (X. ~,) = ( -  COS ~r  + ch ~t.x)/(2~, 2 ) (2.4) 

Y4 (x, L) = ( -  sin Lx + sh kx)/(2~. 3) 

are linearly independent solutions of the equation 

y¢4)(x, k) = ~.4y(x, ~.) (2.5) 

which satisfy the conditions 

y}r_,,(0,~)={0 when j , r ,  
when j = r, j, r = 1, 2, 3, 4 (2.6) 

(in other words, the solutionsyj(x, ~.) (j" = 1, 2, 3, 4) form a fundamental Cauchy system and are expressed 
in terms of Krylov functions [3]). 

The following function 
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all (112 a13 a14 [ 
A(~,) E a21 022 a23 a24 [ 

yt(I,~.) Y2(l,~.) Y3(1,~.) Y4(l, 2k)] 

y((l ,k) y6(I,~,) y~(1,2L) y4(I,X)l" ' 

(conditions (2.6) have been taken into account here) is the characteristic determinant of the boundary- 
value problem when ~ . ,  0. 

Applying Laplace's theorem for evaluating determinants and using trigonometric formulae and 
equalities (2.4) as well as condition (2.3) of the theorem, we obtain 

~ - ( X ) . . .  q+(~.)+_ rl-(X) . ~+(X) 
A(~L) -- MI2 " ~  + MI3 - " ~  M24 " " ~  +M34 2 

~±(k) = 1 + cos X ch X, ~(X) = -sin X ch X :1: cos X sh X (2.7) 

The non-zero eigenvalues of problems (1.2) and (2.1) are the roots of the integral function A(~.) (see 
[12]). 

In addition to roots which are identical to the non-zero eigenvalues of the problem, the characteristic 
determinant can also have a root X = 0 of finite multiplicity. 

Since A(~.) ~ 0, it follows from Hadamard's factorization theorem (see [13]) that the characteristic 
determinants A(~.) of problem (1.2) and/~(X) of problem (2.1) are connected by the relation 

A(L) --- C-"XteaXA(~.) 

where a is a certain real number, k is a certain non-negative integer and C is a certain non-zero constant. 
It follows from this that the fight-hand side of relation (2.7) is identically equal to zero when M O. is 
replaced by Mij - CXkeaX)flij (Identity A). 

Note that the number a in this identity is equal to zero. Actually, let us assume the opposite: a * 0. 
Then, the functions ~-+(X) and rl-*(X) and, also, the same functions multiplied by e "x are polynomially 
independent. (We say that the functions fl(X), f2(X) . . . .  fn(~.) are polynomially independent if their 
combination 

P~ (X)f~ (X) + P2(X)A(X) + " + P,(X)f,(X) 

with the arbitrary polynomials P1(~.), P2(~.) . . . .  P,(Z) is identically equal to zero only in the case when 
Pk(X) - 0 (k = 1, 2, . . . ,  n).) The polynomial independence of these functions follows from the polynomial 
independence of the corresponding exponents. From this and from the IdentityA, we obtain the identities 

MI2 - MI2 - MI3 ~/~13 E M24 =-/~24 ~ M34 --/~34 ~ 0 

which, in combination with identities (2.3), contradict condition (2.2) of the theorem. 
Hence, a = 0. From this and from Identity A, by virtue of the polynomial independence of the 

corresponding functions, we obtain 

(MI2, MI3, MI4, M23, M24, M34) T = c~'k(/~12 , /~13,/~14,/~23,/~24,/~34) T 

which is equivalent to the proportionality of the bivectors al ^ a2 and bl ^ b2. 
It is well-known [14] that there is a natural bijective correspondence between the classes of non-zero, 

proportional bivectors and the two-dimensional subspaces of a vector space. In this correspondence, 
a vector product xl ^ x2 of the vectors of its arbitrary basis xl, x2 corresponds to each subspace and a 
subspace Xl ^ x2 corresponds to each bivector (Xl, x2). It therefore follows from the last identity that 
(al, a2) = (bl, b2) which it was required to prove. 

Remark 1. As was noted above, conditions (1.3) do not constrain the physical formulation of the problem but 
are essential for the uniqueness of finding the boundary conditions. Actually, the boundary conditions y(0) = 0, 
y'"(0) = 0 (MI4 = 1 ~: 0) andy'(0) = O,y'(O) = 0 (M23 = 1 ~: 0) are not equivalent but the characteristic determinants 
of the corresponding eigenvalue problems (1.2) and (2.1) are identical. It follows from this that the abstract boundary 
conditions are uniquely defined using the non-zero eigenvalues of the corresponding eigenvalue problem. 
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3. AN A L G O R I T H M  FOR D E T E R M I N I N G  THE BOUNDARY 
C O N D I T I O N S  FROM THE NAT UR AL  F R E Q U E N C I E S  

It has been shown above that the problem of finding the unknown linear forms Ul(y , ~) and UE(y, ~,) 
from the natural frequencies of flexural oscillations of a rod has a unique solution (in the sense that 
the linear envelopes, composed of the coefficients of these linear forms, are uniquely defined). The 
next question is how can this solution be constructed? 

Further, since instruments for measuring the natural frequencies (spectrometers) cannot record the 
infinite set of frequencies of a system and, furthermore, small errors are possible when measuring the 
natural frequencies, the problem also arises of finding an algorithm for the approximate determination 
of the type of fixing of a rod from a finite set of the first natural frequencies which have been found 
with a certain error. 

This section is concerned with solving these problems and constructing exact and approximate 
solutions. 

The algorithm for determining the linear forms of the boundary conditions is explained in the case 
of the natural physical assumptions that the coefficients Cl and c2 of the matrix A are non-negative. (In 
this case, the solution is simplified in view of the fact that ~. = 0 is not an eigenvalue) 

Since the linear envelope (al, a2) is found from all the second-order minors of the matrixA using 
well-known methods of linear algebra [14], it remains to explain how the unknown minors 

MI2, MI3, M24, M34 (3.1) 

are obtained. 
It follows from representation (2.7) that AQ.) is an even, first-order, integral function and, if the value 

~.j > 0 is a root of this equation, then the values -~.j, -/~.j, i~.j are also roots of this equation. 
It follows from this and from Hadamard's factorization theorem [13] that the characteristic 

determinant A(~.) of problem (1.2) admits of the representation 

,='t 
where K is an arbitrary, non-zero constant and ~.j are the positive eigenvalues of problem (1.2). 

Hence, if all of the positive eigenvalues ~.j of problem (1.2) are known, the identity in Z follows from 
representations (2.7) and (3.2). 

The idea behind the method for the approximate determination of the form of the boundary conditions 
of the problem of the oscillations of a rod from the first s eigenvalues I~ consists of replacing the infinite 
product on the right-hand side of this identity by a finite product. In this case, the eigenvalues Ixj may 
only approximate to the true eigenvalues ~.j. 

Hence, instead of the identity being considered, we can write the approximate identity 

127+MI37+IIC24T +M34 2 j = l  (3.3) 
\ " J / 

The minors (3.1) can be found, using different methods, from relation (3.3) (or from the exact identity 
(3.2), (2.7) if the exact solution is required), apart from a coefficient. For example, they can be found 
using the system of functions which is conjugately biorthogonal to the system of functions 

~-(~.) q+(~.) ~]-(;c) ~+(~) 
2~, 4 ' 2~L 3 ' 2~. ' 2 

in the space L 2. 
However, two methods, based on the derivation of a system of linear algebraic equations from the 

corresponding identity, turn out to be simpler to implement. 
The first of these demonstrates how exact values of the minors (3.1) can be found from the whole 

infinite set of natural frequencies. It is based on the derivation of a system of linear algebraic equations 
with a well-posed matrix from the the exact identity (3.2), (2.7) (for the concept of an ill-posed matrix 
and a well-posed matrix, see [15]). The second method was used to find an approximate solution and 
is based on the derivation from (3.3) of an indeterminate system of three linear algebraic equations in 
four unknowns. 
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First method. On assigning four different specific values Zk (k = 1, 2, 3, 4) to the parameter ~., we 
obtain a system of four linear algebraic equations in the four unknowns (3.1). This system may turn 
out to be indeterminate or ill-posed. This situation arises, in particular, if the eigenvalues ~-k are chosen 
as the values Zk (a corresponding example is considered below in Remark 2). 

However, the numbers Zk (k = 1, 2, 3, 4) can be chosen such that the corresponding matrix of the 
system will be determinate and well-posed. 

The best set of numbers zk (k = 1, 2, 3, 4) we found was 

z I = 7.854757438, z2 = 5.82239, z 3 = 3.98955, z4 = 3.72621 (3.4) 

On assigning the values (3.4) to the parameter ~., we obtain a system of four linear algebraic equations 
in the four unknowns (3.1) 

(3.5) 

where K is an arbitrary, non-zero constant. (To be specific, the constant K can be chosen to be equal 
to any number.) 

The minors (3.1) are found from this system using well-known methods. 
The same method can be used for the approximate determination of the unknowns (3.1) using the 

first s values of Hj = Zj by replacing the infinite product by a finite product. 
However, this method is found to be ineffective for a numerical solution. We checked different forms 

of attachment of the left end of a rod using the MAPLE software package. Generalizing the data 
obtained, it can be said that, for all modes of attachment of the rod in the case of the set of numbers 
Zk (k = 1, 2, 3, 4) in the form (,3.4), if the magnitude ofs  from (3.3) is equal to 100 and the accuracy of 
the chosen values I.tj is e = 10-', then thebivector M is found with a much reduced accuracy (in certain 
cases, it is found with an accuracy of 10-°). If, however, s = 50, the accuracy of the calculation of each 
component of the bivector can be 10 -2, that is, it deteriorates by five orders of magnitude. Hence, in 
order to find an approximate solution using the first method, it is necessary to know an enormous number 
of eigenvalues of the problem, which have been found with a sufficiently high degree of accuracy. This 
is unacceptable in practice. The second method is more efficient. 

Second method. We substitute the values Hj (j -- 1, 2, 3) which are approximately the same as the 
first three positive eigenvalues of problem (1.2), into (3.3). We obtain a system of three homogeneous 
algebraic equations in the four unknowns (3.1) 

M ~-(P'J)+M rl+(l'tJ)+ n-(I.tj) ~+(I.tj) 
12 ~ 13 ~ M24 + M34 ~ -- 0 (3.6) 

Zl.tj Z~j  2112 2 

The resulting system has an infinite set of solutions. It follows from the uniqueness theorem which 
has been proved and from approximate identity (3.3) (where the magnitude ofs  is chosen to be equal 
to three), that the unknown minors (3.1) can be found approximately apart from a coefficient. Hence, 
if Ixj (j = 1, 2, 3) differ insignificantly from the first three eigenvalues, then the resulting system must 
have a rank of 3 and a solution, determined apart from a constant. Calculations, carried out using the 
MAPLE software package confirmed this. The unknown minors are found, apart from a constant. In 
this case, the order of the error in the calculations is frequently hardly different from the error in the 
closeness of the values of btj and Xj and only in certain cases can it deteriorate by four orders of 
magnitude. The principal advantage of this method lies in the fact that its application only requires the 
use of the first three natural frequencies. 

Example. If 141 = 4.7300407, 142 = 7.8532046, t43 = 10.9956078 are the values of (pFto2/cz l/a) corresponding to 
the first three natural frequencies toi determined using a spectrometer, then the solution of system (3.6), apart 
from a constant, has the form 

MI2 = 1, MI3 = 0.91 × 10 -8, M24 =-0.94×10 -1°, M34 = -0.13× 10 -7 (3.7) 

Moreover, according to a condition of the problem M14 = 0, M23 = 0. 
We now find the linear envelope corresponding to these minors. Suppose x = (xl,x2,x3,x4) r is an arbitrary vector 

of the required linear envelope (al, a2) • Then, the coordinates of the vector x satisfy the condition 
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Jail a,2 a13 a,4l[ 

a22 a23 rank a21 a24 [= 
I 

X I X 2 X 3 X4  

2 (3.8) 

Since 

MI2= all a12 ~:0 
a21 a22 

condition (3.8) is equivalent to both of the bordering M12 minors vanishing. 
On expanding the corresponding determinants with respect to the third row, we obtain 

xlM23 -x2Mi3 +x3Mi2 =0, XlM24 -x2Mi4 +x4Mi2 =0  

We now substitute the values of Mij from (3.7) into these equalities. The values of M13 and M24 can be assumed 
to be equal to zero (the degree of accuracy is equal to 10 -7 , that is, quite high). It can therefore be assumed that 
x3 = 0 and x4 = 0, and the arbitrary vector of the linear envelope has the form x = (xl, x2, 0, 0) T. 

As the basis vectors of this linear envelope, one can choose, for example, the vectors 
al = (1, 0, 0, 0) r and a2 = (1, 0, 0, 0) r 

Consequently, the required boundary conditions have the form 

y(0) = 0, y'(0) = 0 

This means that the left end of the rod, which is inaccessible for direct observation, is rigidly clamped. 
Note that the fixing of the end of the rod has been correctly determined. The numbers lal, la2, kt 3 presented above 

are almost the same as the first three roots of the equation 

I - c o s  ~.ch X=0  

The accuracy of the approximation is equal to 10 -7 . 

Remark 2. To what extent is the use of only the first non-zero eigenvalues essential for the approximate establish- 
ment of the boundary conditions? Is it sufficient to use an arbitrary finite set of eigenvalues (natural frequencies) 
in order to determine the boundary conditions? We will now present an example which shows that even the use 
of an infinite set of non-zero eigenvalues as the data still does not guarantee uniqueness in establishing the boundary 
conditions. 

The eigenvalues of the problem 

y~4) = ~4y, y(0) = 0, y'(0) -- 0, y(I ) = 0, y'(l ) = 0 (3.9) 

starting from the seventh (see [3, 16 9, are almost identical with the numbers ~.k = (k + 1/2)~, while the eigenvalues 
of the problem 

yt4~ = X4y, y"(0) = 0, y'"(0) = 0, y(i) = 0, y'(I) = 0 (3.10) 

starting from the seventh, are almost identical with the numbers ~.k = (k - 1/2)~. 
Consequently, the sets {3.k_ 1} and {~k} are practically identical in the infinite set of numbers {(k + 1/2)n} (k = 

8, 9 . . . .  ). However, the corresponding boundary conditions are very different. 
Calculations, carried out using the MAPLE software package, lead to the same results. If, instead of p.j, the 

hundredth, hundredth and first and hundredth and second roots of the equation 

1 + cos lach ~t -- 0 

which have been found with an accuracy of 10 -7, are substituted into system (3.6), the required minors, calculated 
using a computer, apart from a constant have the form 

Mj2=I, Mt3=-0.58x10 -s, M24=0.53×10 -13, M~=--0.95x10 -I° 

These minors do not correspond to the required boundary conditions of problem (3.10) but to the boundary 
conditions of problem (3.9). 

Hence, it is precisely the first non-zero eigenvalues that are essential for uniqueness in establishing the boundary 
conditions. 
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